Synthetic Domain Theory and Models of Linear Abadi & Plotkin Logic

نویسندگان

  • Rasmus Ejlers Møgelberg
  • Lars Birkedal
  • Giuseppe Rosolini
چکیده

In a recent article [4] the first two authors and R.L. Petersen have defined a notion of parametric LAPL-structure. Such structures are parametric models of the equational theory PILLY , a polymorphic intuitionistic / linear type theory with fixed points, in which one can reason using parametricity and, for example, solve a large class of domain equations [4,5]. Based on recent work by Simpson and Rosolini [22] we construct a family of parametric LAPLstructures using synthetic domain theory and use the results of loc. cit. and results about LAPLstructures to prove operational consequences of parametricity for a strict version of the Lily programming language. In particular we can show that one can solve domain equations in the strict version of Lily up to ground contextual equivalence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Category-theoretic Models of Linear Abadi & Plotkin Logic

This paper presents a sound and complete category-theoretic notion of models for Linear Abadi & Plotkin Logic [Birkedal et al., 2006], a logic suitable for reasoning about parametricity in combination with recursion. A subclass of these called parametric LAPL structures can be seen as an axiomatization of domain theoretic models of parametric polymorphism, and we show how to solve general (nest...

متن کامل

Linear Abadi and Plotkin Logic

We present a formalization of a version of Abadi and Plotkin’s logic for parametricity for a polymorphic dual intuitionistic/linear type theory with fixed points, and show, following Plotkin’s suggestions, that it can be used to define a wide collection of types, including existential types, inductive types, coinductive types and general recursive types. We show that the recursive types satisfy...

متن کامل

Linear Abadi & Plotkin Logic

We present a formalization of a version of Abadi and Plotkin’s logic for parametricity for a polymorphic dual intuitionistic / linear type theory with fixed points, and show, following Plotkin’s suggestions, that it can be used to define a wide collection of types, including existential types, inductive types, coinductive types and general recursive types. We show that the recursive types satis...

متن کامل

Categorical Models for Abadi - Plotkin ’ s Logic for Parametricity LARS BIRKEDAL

We propose a new category-theoretic formulation of relational parametricity based on a logic for reasoning about parametricity given by Abadi and Plotkin (Plotkin and Abadi, 1993). The logic can be used to reason about parametric models, such that we may prove consequences of parametricity that to our knowledge have not been proved before for existing category-theoretic notions of relational pa...

متن کامل

Operational Semantics and Models of Linear Abadi-Plotkin Logic

We present a model of Linear Abadi and Plotkin Logic for parametricity [8] based on the operational semantics of LILY, a polymorphic linear lambda calculus endowed with an operational semantics [3]. We use it to formally prove definability of general recursive types in LILY and to derive reasoning principles for the recursive types.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. Notes Theor. Comput. Sci.

دوره 155  شماره 

صفحات  -

تاریخ انتشار 2006